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1. INTRODUCTION

Decoding the human brain requires analyzing its struc-
tural and functional organization at different spatial 
scales, including cytoarchitecture and fiber architecture 
at microscopic resolutions ( Amunts  &  Zilles,  2015;  Axer  & 
 Amunts,  2022). Three- dimensional polarized light imag-

ing (3D- PLI) ( Axer,  Graessel,  et al.,  2011) is an imaging 

technique that reveals the fine- grained configuration and 

3D orientation of myelinated nerve fibers in both gray and 

white matter with micrometer resolution. 3D- PLI thus 

establishes a link between microscopic myeloarchitec-

ture and dMRI- based structural connectivity at the 
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 macro-  and mesoscopic scale ( Caspers  &  Axer,  2019; 
 Zilles  et al.,  2016). 3D- PLI images provide detailed visual 
information for obtaining maps of fiber architecture at dif-
ferent scales. Based on 3D- PLI images, previous work 
demonstrated the detection of myelinated pathways and 
delineation of subfields in the human hippocampus 
( Zeineh  et al.,  2017) as well as the identification of fiber 
tracts and visual areas in the vervet monkey visual sys-
tem ( Takemura  et al.,  2020).

Polarized light imaging allows processing of whole- 
brain tissue sections and enables scanning of large tis-
sue stacks ( Axer,  Gräßel,  et al.,  2020;  Axer,  Poupon,  et al., 
 2020;  Howard  et al.,  2023). However, interpretation and 
analysis of the complex information provided by 3D- PLI 
require substantial expertise that cannot scale to the 
vastly increasing amount of data produced by recent 
high- throughput devices. Moreover, automated large- 
scale analysis of fiber architecture at the resolution pro-
vided by 3D- PLI is challenging due to the complexity and 
high dimensionality of the data. In order to use data anal-
ysis algorithms, a suitable lower dimensional feature rep-
resentation of 3D- PLI textures is needed. Ideally, features 
in this representation are highly expressive for different 
fiber configurations while being robust against other 
sources of variation, such as histological processing 
effects and the relative 3D orientation of image patches. 
Such features, however, are difficult to derive, and we 
hypothesize that an efficient representation cannot be 
manually engineered.

Over the last years, deep learning methods have 
become prevalent in analyzing images in related fields 
such as histopathology ( de  Matos  et al.,  2021), as they 
are able to learn representations from pure data. While 
annotations of fiber configurations in 3D- PLI are not yet 
available at the scale required for supervised deep learn-
ing, we do have access to large amounts of unlabeled 
data. Recent advances in self- supervised representation 
learning suggest using contrastive learning ( Hadsell 
 et al.,  2006;  van  den  Oord  et al.,  2018) to learn distinctive 
representations from unlabeled training data. The training 
objective here is to represent similar instances (positive 
pairs) as close points in the embedding space while 
pushing dissimilar instances (negative pairs) apart to pre-
vent representational collapse. While other methods to 
prevent representational collapse have been proposed as 
well, such as clustering ( Caron  et  al.,  2020), distillation  
( X.  Chen  &  He,  2021;  Grill  et al.,  2020), information maxi-
mization ( Zbontar  et al.,  2021), or variance preservation 
( Bardes  et al.,  2022), contrastive learning of visual rep-
resentations by application or adaptation of SimCLR  
( T.  Chen  et al.,  2020) and MoCo ( He  et al.,  2020) is still 
popular in medical image analysis ( X.  Chen  et al.,  2022; 
 Krishnan  et al.,  2022). Due to its simplicity, we build on 

the SimCLR framework ( T.  Chen  et al.,  2020). An applica-
tion of SimCLR in cytoarchitectonic brain mapping was 
recently performed for histological images ( Schiffer  et al., 
 2021). A main challenge they discovered was the ten-
dency of models to focus more on anatomical landmarks 
than on features descriptive of cytoarchitecture when 
creating positive pairs based on data augmentations of 
the same image. To overcome this effect, they employ a 
supervised contrastive loss ( Khosla  et al.,  2020) by defin-
ing positive pairs based on same labels and sample pairs 
within each brain area.

Several self- supervised learning methods were pro-
posed to learn image representations based on spatial 
context, which can be used to create correlated views for 
contrastive learning ( T.  Chen  et al.,  2020;  van  den  Oord 
 et al.,  2018;  Van  Gansbeke  et al.,  2021) or to define pre-
text tasks ( Doersch  et al.,  2015;  Noroozi  &  Favaro,  2016; 
 Pathak  et al.,  2016). For microscopic imaging, predicting 
the geodesic distance between image patches along the 
brain surface ( Spitzer  et al.,  2018) or the sequence of mul-
tiresolution histopathology images ( Srinidhi  et al.,  2022) 
has been proposed as pretext tasks. Other approaches 
leverage the spatial continuity of images by maximizing 
mutual information between neighboring patches in his-
tological images ( Gildenblat  &  Klaiman,  2019) or satellite 
images ( Ji  et al.,  2019). They assume textures in spatial 
proximity to be similar and, therefore, aim to contrast 
them with textures in more distant parts of images.

In the present study, we explore self- supervised con-
trastive learning for inferring descriptive features of local 
nerve fiber distribution patterns from raw 3D- PLI mea-
surements. To generate positive pairs of 3D- PLI texture 
examples, we assume that fundamental properties of 
local fiber architecture are typically consistent between 
nearby image patches. While this assumption is likely 
violated at boundaries between distinct structural brain 
areas, we assume that it holds for the largest share of 
nearby image patches. In contrast to previous work 
( Gildenblat  &  Klaiman,  2019;  Ji  et al.,  2019), instead of 
utilizing in- plane similarity of images, we use a 3D recon-
structed histological volume to access the spatial coordi-
nates of image patches in 3D. More precisely, we extract 
positive pairs of image patches at nearby coordinates 
across tissue sections. This sampling strategy is moti-
vated by the idea that positive pairs from different tissue 
sections show independently measured tissue and thus 
encourage the learning of features that are robust to ran-
dom variations in the measurement process not descrip-
tive of fiber architecture. We denote this 3D- informed 
self- supervised learning strategy as 3D- Context Contras-
tive Learning (CL- 3D).

To verify the validity of the proposed approach, we 
compare texture representations by different methods on 
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the 3D reconstruction of the occipital lobe of a vervet 
monkey brain. We evaluate features based on their 
descriptive power for different fiber configurations, as 
well as their robustness to other sources of variation. Fur-
thermore, we study the relationship between texture fea-
tures and morphological measures at the macroscopic 
scale, using a precise automatic cortex segmentation 
which we developed specifically for 3D- PLI images based 
on a U- Net model ( Ronneberger  et al.,  2015). To demon-
strate the applicability of the learned CL- 3D features, we 
show that the features form clusters that reflect different 
types of fiber architecture, enable classification tasks 
with minimal labels, and are suitable for query- based 
retrieval of U- fiber structures.

The main contributions of the present study are the 
following:

• We propose a novel 3D- Context Contrastive Learn-
ing (CL- 3D) strategy to learn a powerful feature 
embedding for microscopic resolution image 
patches from 3D- PLI.

• We present specific image augmentations for max-
imizing invariance of learned features with respect 
to typical variations in 3D- PLI images, increasing 
feature quality and robustness.

• We show a high sensitivity of the resulting 3D- PLI 
feature embeddings to fundamental configurations 
of nerve fibers, such as myelinated radial and tan-
gential fibers within the cortex, fiber bundles, cross-
ings, and fannings, as well as cortical morphology.

• Using a dataset from a vervet monkey brain, we 
demonstrate that the learned features are well 
suited for exploratory data analysis, specifically for 

finding clusters of similar fiber architecture and 
retrieving locations with specific architectural prop-
erties based on interactively chosen examples.

2. MATERIALS AND METHODS

2.1. 3D- PLI measurements from the occipital  
lobe of a vervet monkey brain

2.1.1. Tissue samples

For this study, we use a 3D reconstruction of 234 coronal 
sections from the right occipital lobe of a 2.4- year- old 
adult male vervet monkey brain (ID 1818) measured with 
3D- PLI ( Takemura  et  al.,  2020). The brain sample was 
obtained postmortem after flush with phosphate- 
buffered saline in accordance with the Wake Forest Insti-
tutional Animal Care and Use Committee (IACUC 
#A11- 219) and conforming the AVMA Guidelines for the 
Euthanasia of Animals. It was perfusion fixed with 4% 
paraformaldehyde, immersed in 20% glycerin for cryo-
protection, and frozen at - 70°C. Sectioning of the frozen 
brain was performed coronally at 60 µm thickness using 
a large- scale cryostat microtome (Poly- cut CM 3500, 
Leica, Germany). Before each cutting step, blockface 
images ( Axer,  Graessel,  et  al.,  2011) were taken as an 
undistorted reference for image realignment using a CCD 
camera (Fig. 1A).

2.1.2. 3D- PLI acquisition

For 3D- PLI measurement ( Axer  &  Amunts,  2022;  Axer, 
 Amunts,  et al.,  2011;  Axer,  Graessel,  et al.,  2011), brain 
sections were scanned using a polarizing microscope 

Fig. 1. Overview of the 3D- PLI data acquisition. (A) Blockface images are taken for every section before slicing the 
mounted tissue block, providing a distortion- free reference for 3D volume reconstruction. ARTag markers positioned on 
the cryotome in the background are used for precise image alignment. (B) 3D- PLI measurement setup for the polarizing 
microscope (LMP- 1) consisting of a coherent green light source, a rotating linear polarizer, a specimen stage, a stationary 
circular analyzer (quarter- wave retarder, linear polarizer), and a CCD camera to capture transmitted light intensities. (C) 
Example intensity profile recorded by a single pixel of the CCD camera at nine polarizer rotation angles ρ. The profile 
can be described by a sinusodial curve, parameterized by three modalities: transmittance IT , direction ϕ, and retardation 
sinδ = ΔI / IT .
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(LMP- 1, Taorad, Germany), which provides a detailed 
view of nerve fiber architecture at 1.3 µm resolution. In 
this microscope setup, sections are placed on a stage 
between a rotating linear polarizer and a stationary circu-
lar analyzer consisting of a quarter- wave retarder and a 
second linear polarizer (Fig. 1B). The setup is illuminated 
by an incoherent white light LED equipped with a band- 
pass filter of 550 ± 5 nm half- width. Variations in transmit-
ted light intensity are captured using a CCD camera for 9 
equidistant rotation angles ρ of the rotating linear polar-
izer covering 180° of rotation. The recorded light intensity 
variations feature sinusoidal profiles at each pixel 
(Fig. 1C), which are determined by the spatial orientation 
of myelinated nerve fibers. Using Jones calculus, a phys-
ical description for these profiles can be derived as

 Iρ =
IT
2
⋅ 1+ sin 2ρ− 2ϕ( ) ⋅sinδ( ).  (1)

Harmonic Fourier analysis can be applied to retrieve 
parameter maps of transmittance IT , retardation sinδ , 
and direction ϕ from the profiles ( Axer,  Amunts,  et  al., 
 2011). The phase shift δ between the ordinary and the 
extraordinary ray can be further decomposed as

 δ ≈ 2π t ⋅ Δn
λ

cos2α,  (2) 

with the cumulative thickness of birefringent tissue t, 
birefringence Δn, the wavelength of the light source λ, 
and nerve fiber inclination angle α. While birefringence Δn 
and wavelength λ are kept constant for all pixels, the 
number of myelinated nerve fibers, reflected by t, varies. 
To resolve Equation (2) for inclination α, a transmittance- 
weighted model ( Menzel  et al.,  2022) can be used to esti-
mate t. Fiber inclination and direction information can 
then be jointly visualized in fiber orientation maps in HSV 
color space ( Axer,  Graessel,  et al.,  2011), where the hue 
value corresponds to in- plane fiber direction ϕ, while sat-
uration and value reflect the out- of- plane fiber inclination 
α (both zero for vertical fibers at α = 90°).

2.1.3. 3D registration

To access the three- dimensional context of images, reg-
istration of 3D- PLI parameter maps is performed on 234 
sections of the right occipital lobe from section 841 to 
1,083 (Fig. 2). Nine sections heavily deformed by histo-
logical processing are sorted out and replaced by their 
nearest neighbors to ensure high- quality 3D reconstruc-
tion. Before registration of 3D- PLI parameter maps, a vol-
ume reconstruction of blockface images for the complete 
brain is performed to serve as an undistorted reference 
space (Fig. 2A). We use this reference space to correct 

for distortions from histological processing such as 
shrinkage or expansion of tissue, and to anchor the 
occipital lobe in the whole- brain context. For reconstruc-
tion of blockface images, ARTag markers are positioned 
on the cryotome along with the mounted tissue block 
(Fig.  1A). By identification of the markers using the 
ARToolKitPlus library ( Wagner  &  Schmalstieg,  2007), 
blockface images are aligned using affine transforma-
tions ( Schober  et  al.,  2015). Subsequently, nonlinear 
transformation fields are estimated for alignment of 3D- 
PLI transmittance maps using the blockface volume as 
reference, which yields a reconstruction of the overall 
anatomical shape and topology of the occipital lobe in 
the 3D- PLI volume space. The same transformation is 
used to align all 3D- PLI parameter maps. However, 
blockface images do not contain sufficient structural 
detail for precise alignment of fine structures visible in 
3D- PLI such as single fiber bundles and small blood ves-
sels. Therefore, the blockface alignment is used as initial-
ization for an additional registration step between 
adjacent 3D- PLI sections to reconstruct coherent 3D 
fiber tract transitions. In this step, each section is aligned 
to its successor and predecessor by symmetric normal-
ization, which combines affine and deformable transfor-
mation, maximizing cross- correlation between joint 
retardation and transmittance images. The registration is 
performed iteratively forward and backward through the 
stack of sections, with the first and last sections remain-
ing fixed. All registrations are performed using the ELAS-
TIX ( Klein  et  al.,  2010;  Shamonin  et  al.,  2014), ANTs 
( Avants  et  al.,  2010,  2011), and ITK ( McCormick  et  al., 
 2014) software packages. The computed transformation 
fields are used to warp all 3D- PLI parameter maps into a 
common volume space (Fig.  2C) with a resolution of 
31,077  ×  28,722  ×  243 voxels and a voxel size of 
1.3  ×  1.3  ×  60  µm³. In- plane orientation information 
reflected by direction maps ϕ is preserved by adjusting 
the 2D rotation components at each pixel estimated by 
the curl of the transformation field.

2.2. Data augmentations for 3D- PLI

Data augmentations are crucial for increasing the diver-
sity of training data. Self- supervised contrastive learning 
methods in particular rely on augmentations to learn rep-
resentations that are more generalizable and robust to 
variations in the input data ( T.  Chen  et al.,  2020). It is cru-
cial that augmentation schemes model the expected 
variability adequately. In microscopy, for example, similar 
tissue can exhibit different orientations or intensities 
between scans. Since mounted brain sections are not 
perfectly flat, sharpness variation can occur within a 
scan, resulting in slightly out- of- focus areas.
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In this section, we introduce a set of augmentations 
specifically designed to reflect typical variations in 3D- 
PLI images. We scale attenuation and thickness parame-
ters in the physical model of the measured 3D- PLI signal, 
perform geometric affine and flip transformations, as well 
as Gaussian blur. All augmentations are performed for 
joint transmittance, direction, and retardation parameter 
maps. Figure  3 shows example applications of the 
derived augmentations.

2.2.1. Modulation of signal parameters

Parameters of the tissue in the physical model of 3D- PLI 
might vary (e.g., transparency, thickness) depending on 
postmortem time, tissue processing, or storage time of 
the mounted sections. Here, we provide transformations 
that can be implemented into 3D- PLI- specific data aug-
mentations that approximate typical variations in the 
parameters.

Attenuation coefficient. The transmitted light intensity of 
the tissue can vary across image acquisitions due to a 

change in light attenuation. Assuming uniform attenua-
tion for simplicity, transmittance IT  can be described by 
Bouguer– Lambert’s law as

 IT = I0e
−tµ  (3)

for the intensity of incident light I0, section thickness t,  
and attenuation coefficient µ. Scaling the attenuation 
coefficient by linear scaling factor γ a as ′µ = γ aµ results in 
a scaled transmittance

 IT
′′ = I0e

−t ′µ = I0
IT
I0

⎛
⎝⎜

⎞
⎠⎟

γ a
.  (4)

Note that this equation is only an approximation of a real 
change in µ due to the simplifying assumption of uniform 
attenuation.

Section thickness. Although the section thickness was 
held constant throughout all brain sections used in this 
study, it might vary between data acquisitions of other 
samples. To reflect a linear change in  thickness parameter 

Fig. 2. 3D reconstructed occipital lobe of the right hemisphere of a vervet monkey brain measured with 3D- PLI. (A) 
Localization of the occipital lobe on the surface of the 3D blockface reconstruction. Sections used for training (yellow), 
validation (red), and testing (blue) are color coded. Numbers indicate section numbers. (B) 3D volume rendering of 
segmented cortical gray matter and white matter of the lobe. (C) 3D volume rendering for transmittance maps IT , and (D) 
fiber orientation in HSV color space (hue: direction ϕ; saturation, brightness: inclination α). Zoom- ins highlight the fiber 
architecture at the border between primary visual cortex (V1) and secondary visual cortex (V2). All volumes are masked at 
the pial boundary shown as a gray surface.
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t in Equation (2), we scale phase retardation δ ∝ t by a lin-
ear scaling factor γ t. For retardation r = sin δ( ) and ′δ = γ tδ 
we obtain a scaled retardation

 ′r = sin γ tarcsin r( )( ).  (5)

To adjust the light transmittance IT , we compute scaled IT
′′  

analog to Equation (4) for scaled thickness ′t = γ tt as  
follows:

 IT
′′ = I0e

− ′t µ = I0
IT
I0

⎛
⎝⎜

⎞
⎠⎟

γ t
.  (6)

Note that this augmentation is also only an approxima-
tion to a real change in thickness t, as it does not add or 
remove tissue components from the measurement.

2.2.2. Resampling

Many image transformations require resampling of image 
intensity values. For 3D- PLI, resampling of the measured 
intensities from Equation (1) can be performed as

 
Iρ
′′ =

i
∑wiIρ,i  

(7)

by a weighted mean of intensity values Iρ,i with corre-
sponding weights wi, where ∑ i wi = 1. With 3D- PLI 
parameter maps, however, we work with derivations of 
the originally measured image intensities and cannot 

Fig. 3. Illustration of implemented 3D- PLI data augmentations for an example patch from the calcarine sulcus. 
Images show transmittance IT , retardation sinδ , and fiber orientation in HSV color space (hue: direction ϕ; saturation, 
brightness: inclination α). The colormap for retardation is scaled with a gamma correction for visibility. Parameters for the 
transmittance weighted model to compute fiber orientations are kept constant for all augmentations.

directly resample values for retardation r = sinδ  and 
direction ϕ. By representing Equation (7) as Fourier series 
and due to the linearity of the Fourier transformation, res-
ampling of the 3D- PLI parameter maps can be performed 
through

 IT
′′ =

i
∑wiIT, i  (8)

 
′r ⋅ei2 ′ϕ = 1

IT
′′

i
∑wiri IT, i ⋅e

i2ϕ i

 
(9)

by computing IT
′′  via Equation (8) before obtaining ′r  and 

′ϕ  from Equation (9) via decomposition of the right- hand 
side into magnitude and phase, which correspond to ′r  
and 2 ′ϕ , respectively. The equations are used for all geo-
metric transformations and filters, such as affine transfor-
mations or Gaussian blur, that require resampling of 
3D- PLI parameter maps. We use geometric transforma-
tions to account for different orientations or distortion of 
tissue and Gaussian blur to mimic slightly out- of- focus 
areas.

2.2.3. Direction correction

Since 3D- PLI measures the absolute in- plane orientation 
of nerve fibers, any transformation that changes the 
geometry of image pixels requires a subsequent correc-
tion of direction values. For applications in diffusion MRI, 
Preservation of Principal Directions (PPD) ( Alexander 
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 et al.,  2001a,  2001b) was introduced to preserve direc-
tional information undergoing nonrigid transformations. 
While proposed for 3D diffusion tensors, a similar correc-
tion mechanism can be introduced for 3D- PLI, where we 
restrict the transformations to in- plane transformations 
for simplicity. We convert direction angles ϕ to cartesian 
coordinates normalized to one as

 

!
d =

cosϕ
sinϕ

⎛

⎝
⎜

⎞

⎠
⎟

 
(10)

in order to generate corrected direction angles ′ϕ  via

 

d ′′
!"!

= Jf
!
d

  ϕ′′ = atan2 d2
′′ ,d1

′′( )  

(11)

for nonlinear image transformation function f :R2 → R2,  
which maps pixel coordinates in the source domain to 
coordinates in the target domain, and Jacobi matrix Jf  of 
function f . The correction is applied before application of 
function f  to transform the image. For specific transfor-
mations, Equation (11) can be simplified to more conve-
nient forms.

Rotation. For an example of counter- clockwise rotation 
by arbitrary angle θ, Equation (11) can be simplified to

 ′ϕ = ϕ + θ.  (12)

Affine transform. For pixel coordinates 
!
p = x, y[ ]T and an 

affine transformation composed of translation vector 
!
t  and 

matrix A, the transformation function is given as

 f x, y( ) = A
!
p+
!
t .  (13)

If inserted into Equation (11), a simplified correction mech-
anism for the affine transformation can be derived as

 

 
!
d = A

!
d

′ϕ = atan2 d2
′′ ,d1

′′( ).  
(14)

2.3. Cortex segmentation

To access brain morphology and distinguish gray and 
white matter locations, a U- Net model ( Ronneberger 
 et  al.,  2015) is trained for segmentation of pixels into 
background (BG), gray matter (GM), and white matter 
(WM) classes and applied to every 3D- PLI section of the 
lobe. For training the model, we create a dataset repre-
senting a large variety of textures in 3D- PLI images with 
minimal labeling effort by employing an active learning 
strategy in the annotation process. Rather than annotat-

ing complete sections, we manually select 58 square 
regions of interest (ROIs) of size 2,048 pixels (2.66 mm) 
from several sections, including sections outside the 
occipital lobe for a higher variety of examples. We train a 
U- Net model using these ROIs as inputs and apply the 
model to all available sections. We subsequently select 
new ROIs based on the most severe misclassifications in 
the model outputs. This process is repeated to obtain a 
growing dataset of 58, 119, 183, 301, and finally 369 
ROIs of highly diverse patches capturing different tex-
tures across the entire brain.

It should be noted that large parts of the cortex can 
be segmented at acceptable quality using simple 
thresholding of transmittance and retardation values 
( Menzel  et  al.,  2022). Challenging parts, such as an 
oblique cut border between gray and white matter or an 
intersecting pial surface within narrow sulci, form only a 
small fraction of the data, but have a significant impact 
on matching inner and outer cortical boundaries. We, 
therefore, apply a multiclass implementation of focal 
loss ( Lin  et  al.,  2017) for the training objective to 
increase emphasis for the model on challenging exam-
ples. We use 3D- PLI- specific augmentations, as 
described in Section  2.2, for training the cortex seg-
mentation model.

Segmentations of the final model are corrected manu-
ally by removing small tissue fragments, extrapolating 
broken tissue, and filling holes to obtain a topologically 
correct cortex segmentation. As a last step, the resulting 
segmentations for individual 3D- PLI sections are stacked 
to form a segmented volume of the entire cortex in 3D 
(Fig. 2B).

2.4. 3D context contrastive learning

Contrastive learning aims to learn robust and descriptive 
representations of data samples by contrasting similar 
and dissimilar pairs. The goal is to learn an encoding 
function f  that groups similar samples closely together in 
representation space while pushing dissimilar samples 
apart from each other. Assuming a reasonable measure 
of similarity that can be efficiently derived from the data, 
similar samples are generated as positive pairs consisting 
of an anchor sample and a positive sample with high sim-
ilarity, while for negative pairs the anchor is combined 
with a dissimilar negative sample.

In this study, we derive similarity from the spatial 
neighborhood of image patches in a 3D- Context Con-
trastive Learning objective. Given a random location pa 
for the anchor sample, we obtain a positive sample from 
neighborhood location p+ = pa + Δp, where Δp is  chosen 
based on two variants of spatial context sampling 
(Fig. 4A):
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 (i)  CL- 2D, where Δp is sampled on an in- plane circle 
with radius r  from the same tissue section. Setting 
r  =  0 is considered a special case, where the 
anchor sample is also used as positive sample and 
no context sampling is performed (Same).

 (ii)  CL- 3D, where Δp is sampled on a sphere with 
radius r  and p+ is taken across sections by round-
ing the sampled coordinate to the nearest avail-
able section, but excluding the section from which 
the anchor sample was taken (i.e., pa  and p+ are 
always located on different sections). Setting r  = 0 
is considered a special case, where p+  refers to 
the nearest neighbor (NN) at the same in- plane 
coordinates as pa, but in a random adjacent  
section.

For pa , only locations with visible tissue are considered 
to avoid sampling positive pairs containing background 
only, using the segmentation masks obtained in Sec-
tion 2.3. As CL- 3D requires access to the spatial rela-
tionship of sampling locations between sections, we 
 perform context sampling in the undistorted blockface 
3D reference space. We utilize estimated transforma-
tion fields from performing the 3D registration in Sec-

Fig. 4. Illustration of the proposed 3D context contrastive learning scheme. (A) Context sampling performed to obtain 
correlated views of similar nerve fiber architecture (xi, x j ) as (i) identical patches (Same), (ii) in- plane shifted patches on a 
circle with radius r  (CL- 2D), or (iii) patches on a sphere with radius r across sections (CL- 3D). (B) Data augmentations T  for 
3D- PLI are randomly applied to sampled patches to promote learning representations that are robust to typical variations 
in 3D- PLI measurements. Patches are visualized as transmittance IT, retardation sinδ , and fiber orientation map (FOM) 
in HSV color space (hue: direction ϕ; saturation, brightness: inclination α). (C) SimCLR contrastive learning framework 
( T.  Chen  et al.,  2020) consisting of a ResNet encoder, hidden features hi  and hj , a fully connected MLP projection head, 
projections zi  and z j , and InfoNCE loss. (D) For inference, the trained encoder is applied on unaugmented patches x to 
extract 3D- PLI texture features h. Whole sections are converted to feature maps using a sliding window approach. Two 
example feature maps are shown on top of transmittance maps for reference highlighting (i) U- fibers and (ii) primary visual 
cortex (V1).

tion 2.1 to warp locations in the blockface volume to 
individual 3D- PLI sections. Using patches from original 
3D- PLI parameters maps instead of registered ones 
directly has the advantage of including additional varia-
tion between positive samples for the contrastive learn-
ing objective, such as different orientations of texture. 
In addition to the spatial sampling, we perform random 
augmentations for all samples as detailed in Section 2.2 
(Fig. 4B).

For training encoder f , we build on the SimCLR con-
trastive learning framework ( T.  Chen  et  al.,  2020) 
(Fig. 4C). In this specific framework, N augmented pos-
itive pairs x! i, x! j( ) are randomly sampled for each train-
ing step and stored in minibatches of 2N total examples 
x! k{ }. We refer to the set containing indices i, j( ) for all N  

positive pairs in the minibatch as Ω. For each positive 
pair, all 2 N −1( ) other random samples x! k{ }k≠ i, j  are con-
sidered negative samples, which originate from random 
sections and locations. When the training volume is 
large relative to sampling radius r  of positive pairs, it is 
unlikely that a negative sample lies in the same spatial 
neighborhood as the positive one. Encoder f  typically 
refers to a deep learning model, which yields network 
activation vectors hk = f x! k( ) as representations. An 
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additional projection head g is introduced to map the 
activations hk  to a lower dimensional space of projec-
tions zk = g hk( ), on which contrastive loss is applied. 
The training objective is given in terms of the InfoNCE 
loss ( van  den  Oord  et al.,  2018):

 

ℓ i, j = −log
exp Sc zi, z j( ) / τ( )

k=1

2N∑  1 k≠ i[ ]exp Sc zi, zk( ) / τ( ) ,

 

(15)

 

where zk = g f x! k( )( ) and similarity metric Sc  chosen as 
the cosine similarity with temperature parameter τ. The 
former per- sample loss is accumulated into a total loss 
as

 

L = 1
2N

i, j( )∈Ω
∑ ℓ i, j + ℓ j,i.

 

(16)

After training, the projection head is discarded and for 
inference only representations h = f x( ) on unaugmented 
samples x are used (Fig. 4D).

2.5. Model training

2.5.1. Model architecture

For encoder f, we use a ResNet- 50 ( He  et  al.,  2016) 
model with 3 input channels, removing the last fully con-
nected layer. The original ResNet- 50 encoder outputs 
2,048 feature channels, which is well evaluated on nat-
ural images ( Deng  et  al.,  2009). However, training the 
model at full capacity on our data systematically resulted 
in high activations to infrequent but highly pronounced 
structures such as tangential cut radial fibers. Such 
structures made it trivial to solve the contrastive learn-
ing objectivate based on spatial similarity. Therefore, we 
reduce the number of features for all blocks in the Res-
Net- 50 architecture to 1/8 to limit the encoder capacity, 
which results in 256- dimensional hidden representa-
tions, preventing the model from overfitting to these 
specific structures. We choose this dimensionality as a 
trade- off between preventing overfitting and maintain-
ing reasonable model capacity, as bigger models can 
learn more general features ( X.  Chen  &  He,  2021). For 
projection head g, we use a two- layer MLP with ReLU 
activations, hidden feature size of 90 and outputs z  of 
size 32. To feed 3D- PLI images to the ResNet, parame-
ter maps transmittance IT , direction ϕ, and retardation 
sinδ  are stacked as x = (IT , sinδ ⋅cos(2ϕ), sinδ ⋅sin(2ϕ)) 
to the channel dimension, which resolves the cyclic 
nature of direction values ϕ. We standardize the input 
channels by running mean and standard deviation over 
the first 1,024 batches during training.

2.5.2. Implementation

We use PyTorch ( Paszke  et al.,  2019), PyTorch Lightning 
( Borovec  et  al.,  2022), and Hydra ( Yadan,  2019) frame-
works using the Quicksetup- ai ( Mekki  et al.,  2022) tem-
plate for building our model. Data augmentations (cf. 
Section 2.2) are implemented using the Albumentations 
( Buslaev  et al.,  2020) framework. Training is conducted 
using a distributed data- parallel strategy on 4 Nvidia 
A100 GPUs with synchronized batch normalization sta-
tistics ( Ioffe  &  Szegedy,  2015) on the supercomputer 
JURECA- DC at the Jülich Supercomputing Centre (JSC) 
( Thörnig,  2021).

2.5.3. Data sampling

We sample square patches of size 192 pixels (253 µm) as 
anchor samples from random locations within the train-
ing volume, excluding background using the previously 
generated cortex segmentation. For each anchor sam-
ple, we take positive samples from a random location in 
spatial proximity, depending on the chosen definition of 
spatial similarity. As we sample patch locations on the fly, 
we do not have a fixed dataset size but define an epoch 
as the sampling of 512 × 512 = 262,144 positive pairs. 
Per training step, we take 512 anchor samples and  
positive samples and process them evenly split on the 4 
GPUs.

2.5.4. Data augmentation

For all samples, we apply an affine transformation (scal-
ing from [0.9, 1.3] on each axis, rotation from [- 180°, 
180°], and shearing from [- 20°, 20°] on each axis) with 
linear interpolation and subsequent center cropping to 
crops of size 128 pixels (169 µm) to eliminate padding 
effects. Subsequently, we perform random flipping on 
center crops and scale relative thickness t (Eq. (4)) and 
the attenuation coefficient µ (Eq. (3)) each by random 
scaling from a logarithmic distribution with basis 2 from 
[- 1, 1]. As a last augmentation, we perform Gaussian blur 
with a probability of 50% and σ from [0.0, 2.0].

2.5.5. Training

All augmented crops are fed to the encoder model and 
projection head in order to minimize the loss in Equation 
(16). We use Adam optimizer ( Kingma  &  Ba,  2017) with a 
learning rate of 10- 3, a weight decay of 10- 6, and default 
parameters β1  =  0.9, β2  =  0.999, and ##  =  10- 8. For the 
choice of temperature parameter τ in Equation (15), we 
follow the optimal choice of τ = 0.5 reported by  T.  Chen 
 et al.  (2020) when training until convergence. We apply 
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the same loss for training and validation. All models are 
trained until convergence if the validation loss does not 
reduce for more than 50 epochs, which takes between 
195 (2D context) and 400 (3D context) epochs.

2.5.6. Inference

After training, model weights are frozen and inference is 
performed on complete sections using the trained Res-
Net encoder, discarding the projection head. Each sec-
tion is converted into feature maps using a sliding window 
approach by dividing 3D- PLI parameter maps into tiles of 
size 128 pixels (169 µm) with 50% overlap. The overlap is 
chosen to better represent pixels at the edges of patches 
that would otherwise lie on the boundary between adja-
cent patches. We extract a 256- dimensional feature vec-
tor for each tile without applying the data augmentation 
used in training. Extracted feature vectors are reassem-
bled into feature maps with reduced in- plane resolution 
of 84.4 µm per pixel compared with original input param-
eter maps, but 256 feature channels characterizing the 
local texture content. Compared with the section thick-
ness of 60  µm, this makes the feature voxels approxi-
mately isotropic.

2.6. Classical texture features

The present approach enables learning of texture fea-
tures specifically for 3D- PLI parameter maps. As base-
lines for texture analysis, we apply classical first- order 
histogram features (mean, variance, skewness, kurtosis, 
entropy), Grey- Level Co- occurrence Matrices (GLCM) 
( Haralick  et al.,  1973), Local Binary Patterns (LBP) ( Ojala 
 et al.,  2002), and a combined set of all of their features. 
These are well- established approaches to represent tex-
tures in medical imaging such as CT, MR, PET ( Scalco  & 
 Rizzo,  2017), and histopathology ( de  Matos  et al.,  2021). 
We compute texture features for whole sections using the 
same sliding window approach introduced in Section 2.5 
by dividing 3D- PLI parameter maps into tiles of size 128 
pixels (169 µm) with 50% overlap.

Direction maps ϕ represent the absolute orientation of 
fibers within the imaging plane. Since we aim to find tex-
ture representations that are independent of their abso-
lute orientation, we are more interested in local patterns 
of ϕ than in their absolute values. We use the Sobel oper-
ator as a first derivative filter to highlight image edges 
and eliminate absolute values of ϕ. To filter direction val-
ues ϕ, we need to resolve their circular nature. Therefore, 
we represent direction angles ϕ in polar form as complex 
numbers

 z = cos 2ϕ( )+ isin 2ϕ( )  (17)

and apply Sobel filtering as

 Gx = Kx ∗∗ z  and Gy = Ky ∗∗ z  (18)

with convolution operator * and Sobel filter kernels Kx 
and Ky . We aggregate the filtered images as

 ϕ! = Gx +Gy 12, (19) 

where | . | extracts the magnitude of complex numbers, 
and dividing by 12 normalizes the filtered values to [0, 1].

For histogram features, we compute normalized histo-
grams with 128 bins for each of the parameter maps IT, 
sinδ, and ϕ! . From the histograms, we compute mean, 
variance, skewness, kurtosis, and entropy as features. 
Features for all parameter maps are concatenated, result-
ing in a total of 15 histogram features.

To extract LBP features, we compute local binary pat-
terns for each patch by dividing the angular space into 
eight points with multiple radii [1, 2, 3] to define the local 
neighborhood of texture. We compute normalized histo-
grams with 10 bins of LBP values for each radius and 
parameter map and concatenate them into a feature vec-
tor with 90 features.

We compute normalized and symmetric GLCMs for 32 
equally spaced bins of parameter maps for distances [1, 
2, 4] and angles [0, π/4, π/2, 3 π/4]. From each GLCM, we 
compute contrast, correlation, energy, and homogeneity 
as features ( Haralick  et  al.,  1973). We concatenate the 
features for all parameter maps and distances while aver-
aging over the angles to make the features robust to rota-
tions, resulting in 36 total features.

In addition, we include a comprehensive combined set 
of all classical texture features (Histogram, LBP, GLCM) 
as a baseline.

2.7. Pretrained encoder on ImageNet

In recent years, there has been increasing interest in 
using pretrained deep learning models as feature 
extractors in histopathology ( de  Matos  et  al.,  2021), a 
domain very close to ours. Here, we observe that many 
recent studies analyzing histopathological images use 
encoders pretrained on ImageNet ( Deng  et al.,  2009) for 
feature extraction and downstream analysis ( Breen  et al., 
 2024;  Liu  et  al.,  2024;  Wu  et  al.,  2024). Therefore, we 
complement the classical baselines with a pretrained 
ResNet- 50 ( He  et  al.,  2016) encoder, which has been 
trained on images from the ImageNet dataset using the 
SimCLR contrastive learning objective ( T.  Chen  et  al., 
 2020).

As the ResNet- 50 model was trained on natural RGB 
images, we use two types of images generated from  
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3D- PLI parameter maps to visualize the fiber architec-
ture: (1) Transmittance maps, stacked in the color chan-
nel dimension, to create grayscale RGB images, and (2) 
fiber orientation maps (FOM), which can be directly fed to 
the model. In contrast to the width- reduced ResNet- 50 
architecture we use for CL- 3D and CL- 2D, this model has 
full capacity and produces 2,048 features for image 
patches of 128 pixels (169 µm) size. For the creation of 
feature maps, we use the same sliding window approach 
as in the inference of CL- 2D and CL- 3D (Section 2.5).

3. EXPERIMENTS AND RESULTS

We train CL- 2D and CL- 3D models using the data from 
the occipital lobe of a vervet monkey brain described in 
Section 2.1. We split the volume into sections for training 
(#962– #1077), sections for validation (#1078– #1083), and 
sections for testing (#851– #961) as shown in Figure 2A. 
We evaluate the feature representations produced by the 
models regarding their descriptive power for different 
fiber configurations, spatial consistency, and applicability 
for downstream tasks. In particular, we show that classi-
fication of texture into tissue classes requires less anno-
tations based on CL- 3D and CL- 2D features than other 
methods. We compare the extent to which features of 
different approaches can be related to brain morphology 
and their robustness to variations between sections. We 
investigate the main factors of variation specifically for 
CL- 3D features and demonstrate that they lend them-
selves to interactive data exploration and identification of 
nerve fiber architecture in large volumes of 3D- PLI data. 
All experiments are evaluated exclusively on features 
extracted from sections not included in training.

3.1. Linear evaluation of features  
with minimal labels

A common approach to assess the quality and robust-
ness of feature representations is to perform linear evalu-
ation ( T.  Chen  et al.,  2020;  van  den  Oord  et al.,  2018) on 
a given classification task. For the linear evaluation proto-
col, a simple linear classifier is trained on top of features 
extracted for each data sample. Being able to perform 
the classification task with a simple linear model indi-
cates a good discrimination of classes in feature space 
and thus high- quality features. In addition, we analyze 
the robustness of features in a weakly supervised setting 
by providing the classifier with increasing number of 
labeled training examples, starting with only a few per 
class. These examples scale with human annotation 
effort involved in creating the dataset. Self- supervised 
CL- 3D and CL- 2D encoders are still trained on the full 
amount of unlabeled training data, which does not require 

human annotations and is, therefore, available in a much 
higher quantity.

For the classification task, we use the training data 
acquired for the cortex segmentation performed in Sec-
tion  2.3, which segments 3D- PLI images into three 
classes: background (BG), gray matter (GM), and white 
matter (WM). We divide the annotated ROIs into 228 ROIs 
(from 42 sections located caudal to the central sulcus) for 
training and 141 ROIs (from 19 sections encompassing 
the prefrontal cortex) for testing. This train/test split 
ensures that section IDs for testing the classifier do not 
contain sections from the occipital pole used for training 
the self- supervised models and allows testing the gener-
alizability of features across the brain. To perform classi-
fication on individual texture patches, we extract square 
patches of 128 pixels (169 µm) on a regular grid per ROI 
and assign each patch the label of the most frequent 
class in the segmentation mask. The resulting dataset 
comprises many different textures with slightly unbal-
anced class distributions for both training (10,696 WM, 
32,613 GM, and 12,829 BG patches) and testing (7,065 
WM, 19,577 GM, and 7,589 BG patches).

For the linear classifier, we use a logistic regression 
classifier in a one- versus- rest scheme. We compare the 
classification performance by computing macro F1 
scores across classes, and calculate the significance of 
these scores by computing standard error over 50 inde-
pendent fits of the classifier on random subsets of train-
ing examples.

3.1.1. Evaluation of features by different methods

We compare CL- 3D and CL- 2D features with classical 
texture features and a pretrained ResNet- 50 encoder  
on ImageNet under the linear evaluation protocol. Addi-
tionally, we report the performance of a supervised  
ResNet- 50 classifier as a reference, specifically trained 
on the classification task using the full training dataset. 
For this model, we used a class- weighted cross- entropy 
loss with Adam optimizer in the same setting as described 
in Section  2.5. The model was trained for 416 epochs 
until convergence of validation accuracy, using a random 
80/20 train/validation split.

With minimal training examples, results in Figure  5 
show a clear lead in classification performance by our 
CL- 2D and CL- 3D models. Both models achieve macro 
F1 scores of 0.94 with only 30 random samples per class 
to fit the linear classifier. By using 10,000 samples per 
class, CL- 3D, CL- 2D, and a combination of all classical 
texture features (Combined) match the F1 score of the 
supervised ResNet- 50 model (0.97). All other methods, 
including each individual classical texture descriptor, 
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show lower F1 scores throughout all number of samples 
per class.

3.1.2. Effect of data augmentations for 3D- PLI  
on texture features by CL- 3D and CL- 2D

In Section 2.2, we introduce data augmentations specifi-
cally designed for 3D- PLI parameter maps and use them 
in the training of CL-3D and CL- 2D models. To test the 
effect of these augmentations on feature quality and 
robustness, we perform linear evaluation of CL- 3D and 
CL- 2D models trained without any augmentation, with 
every single augmentation, and with all augmentations 
combined.

As shown in Figure 6A, a CL- 2D model trained without 
data augmentations clearly underperforms compared 
with models trained with any individual data augmenta-
tion, except the blur augmentation, which appears to 
degrade feature representations for this classification 
task. Among models trained with individual augmenta-
tions, color distortions (modulation of section thickness 
and the attenuation coefficient) yield the best results. A 
combination of all augmentations together performs the 
best overall.

Results in Figure 6B demonstrate that CL- 3D benefits 
most from color distortions. Models trained with geomet-
ric transformations only, such as affine and flip augmen-
tations, perform worse than a model trained without 
augmentations. Excluding them from the full set of aug-
mentations, however, does not improve performance 
(see Appendix Fig. A1 in Appendix). Using all introduced 

augmentations during training leads to the best results 
for CL- 3D.

3.2. Main factors of variation in the learned 
representations

To gain insights into the main factors of variation cap-
tured by CL- 3D features, we perform principal compo-
nent analysis (PCA) on a random subset of 1 million 
voxels from the feature maps. We use the estimated prin-
cipal axes to project feature channels for the entire data-
set onto nine components with largest explained variance 
(64.2% cumulative explained variance), with at least 
2.8% of variance explained per component. Explained 
variance refers to the amount of information in the data-
set that is retained by each PCA component.

Figure 7D (see also Figure A2 in the Appendix) shows 
images for the first nine principal components, which in 
general terms reveal anatomically plausible structures. 
Component (1) shows a clear separation of white matter 
(WM) and gray matter (GM). Within GM, higher values indi-
cate layers with a lower density of radial fibers. Within GM, 
values in component (2) distinguish between layers with 
high density of radial fibers (low values) and high density of 
tangential fibers (high values in the superficial layers, which 
contain mainly tangential fibers, and values around 0 in the 
Gennari stripe, which presents both radial and tangential 
fibers), while high values within WM highlight edges 
between fiber bundles. Low values in component (3) high-
light layer I, which contains a high density of tangential 
fibers, as well as WM structures with high fiber density that 

Fig. 5. Comparison of different feature extraction methods under the linear evaluation protocol. A simple linear classifier 
is fitted on extracted features with an increasing number of labeled samples per class to classify texture patches as gray 
matter, white matter, or background. With minimal samples per class provided, CL- 3D and CL- 2D features perform best, 
demonstrating highest robustness across the brain. Using the full number of samples per class, CL- 3D, CL- 2D, and a 
combination of classical texture features (Combined) all match the performance of a ResNet- 50 model trained specifically 
on this task, indicating a high- quality feature space of these methods. Shaded areas mark standard error over 50 
independent fits of the classifier on randomly selected samples.
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run in- plane, such as the tapetum. High values indicate 
tangentially sectioned radial fibers. Component (4) has low 
values toward out- of- plane fibers and highly oblique cor-
tex and high values toward superficial GM layers with a 
low density of radial fibers and low obliqueness. Compo-
nent (5) shows high values for layer IVc in the primary 
visual area (V1) and layer VI throughout the whole cortex. 
In component (6), high values show layer I throughout the 
cortex as well as layer IVb within V1 (Stria of Gennari), that 
is, they highlight GM layers with a high density of tangen-
tial fibers. High and low values in (7) mainly represent WM, 
with high values indicating U- fibers and other in- plane 
fibers and low values indicating steep fibers or crossings. 
The stratum sagittal (SS) has the lowest values, as here 
fibers emerge vertically from the plane. High values in GM 
mainly highlight tangentially sectioned radial fibers. High 
values in (8) also highlight tangentially sectioned radial 
fibers in GM. Additionally, they indicate abrupt twisting of 
flat, in- plane fibers that twist out of plane at the GM/WM 
transition, and show parts of U- fibers that are cut through 
the plane. In component (9), layers IVa, IVc, and VI within 
V1 are characterized by high values.

3.3. Encoding of brain morphology  
in texture features

Fiber architecture has mutual dependencies with cortical 
morphology ( Striedter  et al.,  2015;  Van  Essen,  1997). To 
investigate to what extent different texture representa-
tions encode cortical morphology, we extract a range of 
morphological parameters from our test data. In particu-
lar, based on the cortex segmentation described in Sec-
tion 2.3, we compute a Laplacian field between outer pial 

and inner white matter surfaces using the HighRes cortex 
( Leprince  et  al.,  2015) module included in brainvisa 
( Cointepas  et al.,  2001). We extract the following  measures:

• Equivolumetric cortical depth ( Bok,  1929) as the 
depth along cortical traverses following the gradi-
ent of the Laplacian field, compensating for the 
effect of cortical curvature through the divergence 
of the same field. It has values of 0 at the Pial and 1 
at the gray– white matter surface.

• White matter depth defined as the shortest distance 
from each voxel within white matter to the interface 
between the cortical ribbon and white matter in mil-
limeters.

• Cortical curvature as the divergence of the gradient 
of the Laplace field between pial and white matter 
surfaces ( Goldman,  2005; equation 3.8 in  Leprince 
 et al.,  2015)

• Obliqueness of the sectioning plane, computed as 
the absolute angle between the gradient of the 
Laplacian field and the sectioning plane with values 
in [0°, 90°].

We follow the approach of  Spitzer  (2020) and quantify 
the extent to which these measures can be predicted 
from texture features by different methods using a linear 
model. Being able to predict a quantity with a simple lin-
ear model indicates a robust encoding of that quantity. 
We randomly select 10,000 voxels from the training set 
and compute both their feature representations using the 
trained models and the above- mentioned morphological 
measures. The features are standardized using Z- score 
normalization and used to fit a linear regression model via 

Fig. 6. Impact of different classes of data augmentations on quality and robustness of extracted features by the 
proposed models (A) CL- 2D and (B) CL- 3D. Quality and robustness are evaluated using the linear evaluation protocol 
under an increasing number of labeled samples per class. A simple linear classifier is fitted on extracted features to 
differentiate texture patches as gray matter, white matter, or background. Macro F1 scores are presented for each model 
across different augmentation sets. Models trained with all augmentations achieve the highest robustness and quality of 
features, surpassing those trained with individual augmentations or without any augmentations. Shaded areas indicate the 
standard error over 50 independent fits of the classifier on random training samples.
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least squares. For the model, we use relatively high L2 
regularization with a weight of 104 to reduce overfitting 
observed for the pretrained model (ImageNet) with high 
number of 2,048 features. The goodness of the fit is 
determined by calculating the coefficient of determina-
tion R2, which denotes the proportion of variation in the 

measures that can be explained by the linear model from 
the feature representations. We compute R2 for predicted 
values from 10,000 randomly selected voxels from the 
test set.

Our results in Table 1 show highest R2 values for the 
prediction of all morphological measures from features 

Fig. 7. Projection of CL- 3D texture representations from section 898 onto the 9 PCA components with largest explained 
variance. (A) Transmittance and (B) fiber orientation map (FOM) for the section. (C) Scree plot showing the variance 
explained by the first 32 components. The horizontal red line indicates the variance explained by the 9th component of 
2.8%. (D) Color- coded parameter maps of the selected PCA components, with background pixels masked as zero. The 
maps reveal anatomically plausible structures. GM: gray matter, WM: white matter, V1: primary visual cortex.
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by our CL- 3D method with medium sampling radius 
r = 118. It achieves R2 values of 0.82 for cortical depth, 
0.36 for white matter depth, 0.17 for curvature, and 0.52 
for obliqueness, which are overall higher compared with 
CL- 2D with in- plane context sampling. Using a larger or 
smaller radius for context sampling does not significantly 
increase R2 values for CL- 3D or CL- 2D. While for r  = 0, 
that is, using nearest neighbor (NN) context sampling for 
CL- 3D, R2 values are marginally smaller, they decrease 
considerably for CL- 2D, when using no context sampling 
in model training. Classical texture descriptors (GLCM, 
Histogram, LBP) and the pretrained model show overall 
much smaller R2  values and do not encode curvature at 
all, that is, showing values around 0.

Scatter plots shown in Figure 8 visualize predicted and 
true values at the example of CL- 3D and combined clas-
sical texture features. As shown in Figure 8A, for oblique-
ness, especially larger angles can be predicted from 
CL- 3D features, while the prediction of smaller angles in 
the scatter plot exhibits a deviation. Predictions of white 
matter depth from features by both methods show a 
clearer fit for smaller depths than for larger depths. As 
shown in Figure 8B, neither curvature nor obliqueness can 
be predicted from the selected classical texture features.

3.4. Clustering of learned features

3.4.1. Hierarchical clustering

We perform hierarchical cluster analysis in the embed-
ding space of CL- 3D features to evaluate the extent to 
which these features map characteristic nerve fiber con-
figurations. Hierarchical clustering creates a tree- like 
structure of hierarchical relationships among data points 

as a dendrogram based on their similarity in representa-
tional space. We choose the bottom- up approach for 
agglomerative clustering, which merges closest clusters 
based on our choice of Euclidean distance and Ward 
linkage. To reduce noise and computational effort, we 
cluster PCA- reduced feature maps from Section  3.2, 
where features are projected onto the first 20 compo-
nents with 80.4% total explained variance. Additionally, 
using PCA- reduced feature maps mitigates potential 
negative effects of the curse of dimensionality when cal-
culating distances in high- dimensional feature spaces. To 
increase the receptive field and reduce in- plane noise, 
each feature map is smoothed by an in- plane 2D Gauss-
ian kernel with a standard deviation of σ = 1 which pro-
vides a good trade- off between noise reduction and 
keeping sensitivity to smaller structures.

We select features from foreground voxels across all 
test sections. Due to the huge number of 16 million data 
points, hierarchical clustering cannot be applied directly 
to the data points. Instead, we perform a two- step 
approach by first performing k- means clustering on a 
subset of 100,000 samples for 128 clusters. We use the 
128 resulting cluster centers to assign all remaining 
15.9 million data points to these clusters, allowing us to 
represent the whole test volume by superpixel- like clus-
ters (Fig. 9A). Cluster assignments in the coronal plane 
appear visually smoother than the assignments across 
brain sections in the axial and sagittal planes. As a sec-
ond step, we perform agglomerative hierarchical cluster-
ing to obtain a cluster dendrogram (Fig. 9B). From this 
result, we calculate silhouette scores for an increasing 
number of clusters to identify interesting candidate clus-
terings for visualization (Fig. 9C). Considering the overall 

Table 1. Proportion of variance in morphological measures cortical depth, white matter (WM) depth, curvature,  
and obliqueness that can be explained by a linear model from extracted texture features.

Method Dim. r  [µm] Input Cort. depth WM depth Curv. Oblique.

GLCM 36 - IT , sinδ, ϕ! 0.53 0.26 0.01 0.05
Histogram 15 0.52 0.20 0.00 0.03
LBP 90 0.36 0.13 0.01 0.06
[Histo., LBP, GLCM] 141 0.63 0.27 0.02 0.08
Pretrained (ImageNet) 2048 - IT 0.60 0.22 0.00 0.18

FOM 0.62 0.17 0.01 0.19
CL- 2D 256 0 IT , sinδ, ϕ 0.58 0.14 0.07 0.15

118 0.79 0.34 0.13 0.43
236 0.78 0.36 0.13 0.42

CL- 3D 256 NN IT , sinδ, ϕ 0.79 0.35 0.17 0.49
118 0.82 0.36 0.17 0.52
236 0.82 0.34 0.14 0.51

To quantify the quality by which features encode each measure, we calculate the goodness of each fit using the coefficient of 

determination R2. For CL- 2D and CL- 3D, r  refers to the distance at which context sampling is performed, with nearest neighbor 
(NN) sampling being a special case of CL- 3D. The methods use different input modalities (Input) and produce features with different 
dimensionalities (Dim.). Bold values indicate the highest R2 value per column.
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decline in silhouette scores, we observe local maxima at 
3, 7, and around 13– 14 clusters. Notably, increasing from 
13 to 14 clusters introduces a particularly interesting 
cluster, exclusively highlighting cortical layers in primary 
visual area (V1). Therefore, we select 14 clusters for visu-
alization. We would like to point out that using fewer (32) 
or more (1,024) k- means centroids for subsequent hierar-
chical clustering resulted in overall lower silhouette 
scores and led to unspecific, over- simplifying clusters or 
more noisy clusters, respectively.

Results for selected candidate cluster configurations 
for visualization are shown in Figure 9E. We observe the 
same difference in spatial smoothness of cluster assign-
ments between the coronal, axial, and sagittal planes as 
shown in Figure  9A, with the coronal plane appearing 
visually smoother. A range of characteristic aspects of 
fiber architecture are revealed, which are identified and 
confirmed by two neuroanatomists (N.P.- G. and M.N.). 
The descriptions are based on a comparison of each 
cluster with high- resolution 3D- PLI images across multi-
ple sections and its overall distribution within the 3D 
geometry of the brain to ensure the consistency of 
descriptions.

3 clusters. Solutions for 3 clusters demonstrate a first 
global differentiation of the data into GM and WM. Due to 
its high fiber density, cortical layer VI is sometimes repre-
sented inside the WM cluster. We further observe a small 
cluster of tangentially cut cortex.

7 clusters. The configuration with seven clusters dif-
ferentiates superficial and deep cortical layers. This seg-
regation is shaped by the packing density of radial fibers 
in the deeper layers, and the tangentially running fibers 
close to the pial surface. For WM, voxels are split into two 
clusters: (1) the red cluster in Figure 9E highlights densely 
packed fibers with out- of- plane orientation of the sagittal 
stratum (SS), as well as surrounding densely packed in- 
plane fibers of the tapetum and (2) the green cluster in 
Figure 9E encompasses in- plane fibers or fibers with rel-
atively low inclination, together with steep but less 
densely packed fiber bundles.

14 clusters. The configuration of 14 clusters reveals 
an increased sensitivity to specific WM fiber bundles and 
displays a cortical region delineation for the primary 
visual cortex (V1). Furthermore, a range of fiber architec-
tural properties can be recognized in the maps corre-
sponding to the clusters in Figure 9B:

• Cluster (1) shows the tapetum and stratum calcari-
num (SC), characterized by approximate in- plane 
fibers with high packing density.

• Cluster (2) displays densely packed, highly inclined 
fibers and fibers of the sagittal stratum (SS) with 
out- of- plane orientation.

• Cluster (3) includes WM voxels from sections with 
an artifact- related increased light transmittance 
(not present in the section shown in Fig. 9E).

Fig. 8. Linear encoding of different morphological measures in (A) the proposed 256 dimensional CL- 3D feature 
representations and (B) 141 dimensional combination of classical texture features (Histogram, LBP, GLCM). A linear model 
is fitted via least squares to predict cortical depth, white matter depth, curvature, and obliqueness. Predicted and true 
target measures are shown as blue scatter plots, where red lines indicate an optimal fit. Goodness of each fit is calculated 
by the coefficient of determination R2.
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Fig. 9. Agglomerative hierarchical clustering of 128 k- means centroids shows a hierarchy of fiber architecture. (A)  
128 k- means centroids forming superpixel- like clusters. (B) Dendrogram representing distances between identified 
clusters before merging and approximate labels naming the structures with highest overlap with each cluster. (C) 
Silhouette plot showing local maxima around 3, 7, and 14 clusters. (D) UMAP projection of the CL- 3D features. The color 
of each point corresponds to the respective cluster assignment. (E) Clustering results for 3, 7, and 14 clusters.
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• Cluster (4) mainly displays WM voxels, but in some 
cortical segments also encompasses layer VI. WM 
covered by these voxels is characterized by fibers 
with high packing density, small inclination angles, 
and twisting or crossing patterns.

• Cluster (5) mainly highlights layer VI of cortical seg-
ments complementing cluster 4. WM voxels 
encompass fibers with low packing density and low 
inclination at the border between GM/WM.

• Cluster (6) reveals only WM voxels with very small 
fiber inclination mostly parallel configurations, with 
only a few crossings.

• Cluster (7) highlights voxels located in highly oblique 
cortex with layers characterized by low myelination. 
When not tangentially sectioned, this portion of the 
cortex is encompassed by cluster (9).

• Cluster (8) highlights the most superficially located 
bands of tangential fibers, namely those of the 
zonal layer and the Kaes– Bechterew stripe, which 
are located in cytoarchitectonic layers I and IIIa, 
respectively ( Zilles  et al.,  2015), and found through-
out the whole cortex.

• Cluster (9) covers cortical layers with low density of 
myelin. The width of this cluster varies along the 
cortical ribbon. Some areas, where radial fibers 
reach almost up to layer II, are characterized by a 
narrow band of cluster (9), while in other areas it is 
broad because their radial fibers only reach into 
layer IIIb. The cluster disappears in the cortex of 
highly compressed sulci.

• Voxels in cluster (10) are also located in obliquely 
sectioned layers with a low myelination while being 
less oblique than those of cluster (7).

• Cluster (11) encompasses steep radial fibers fan-
ning out at the apex of the gyrus.

• Cluster (12) highlights approximate in- plane fibers 
with low packing density, fanning out at the apex of 
the gyrus.

• Voxels of cluster (13) are restricted to the primary 
visual area (V1). They are mainly found in layers 
IVb– V, but, depending on packing density, some-
times also those of layer (VI). This cluster could 
reflect local cortical connectivity within V1.

• Cluster (14) highlights deeper layers mainly due to 
their density of radial fibers. Its width varies along 
the cortical ribbon and is inversely related to the 
width of cluster (9). In V1 cluster (14) is restricted to 
layers IIIb and IVa. In the remaining cortex, depend-
ing on the area it can reach from layer IIIa or IIIb to 
layer V or VI.

To visualize the organization of data points in the 
learned representational space, we additionally perform 

UMAP ( McInnes  et  al.,  2018) projection of the PCA- 
reduced features used for clustering on two dimensions 
for 4,000 example data points. Projections in Figure 9D 
show the organization of features in a continuous band 
along cortical depth starting from superficial layers (clus-
ters 8 and 9) to deeper layers (clusters 13, 14, 5, and 
partially 4) until reaching WM clusters (3, 6, and partially 
4). Branches to the sides highlight different degrees of 
obliqueness of cortical layers (i.e., clusters 7, 9, and 10). 
Clusters for structures such as the SS (cluster 2), tape-
tum/SC (cluster 1), or layers of V1 (cluster 13) form sepa-
rate branches in the projected space. We observe splits 
into multiple fragments by clusters 3, 4, and 13 in UMAP 
space. These splits can be partially explained by the fea-
tures providing a more fine- grained distinction between 
patches from different cortical and white matter depths 
than captured by the clustering results. While increasing 
the number of clusters in hierarchical clustering reveals 
these additional details of fiber architecture, we limit the 
number of clusters to 14 in our qualitative analysis to 
maintain interpretability. Beyond this point, the complex-
ity of clusterings gradually increases, and the content of 
individual clusters becomes more difficult to describe.

3.4.2. Consistency of cluster assignments across 
sections

In addition to 2D cluster maps, we assemble 3D render-
ings of the configuration with 14 clusters (Fig. 10). While 
CL- 3D features were generated based only on in- plane 
texture information without cross- section constraints, the 
volume renderings reveal consistent cluster boundaries 
across sections, as can be observed by the smooth clus-
ter shapes in the cross- sections. Cluster 13 stands out in 
being more noisy than other clusters.

To better quantify the cross- section consistency of 
feature clusters, we compute the intersection over union 
(IoU) of cluster assignments between adjacent sections 
for different number of k- means clusters (2, 8, 32, and 
128). Since absolute coordinates are not included in the 
features, this analysis provides insights into the robust-
ness of representations to intersection variations arising 
from histological processing.

IoU scores reported in Table 2 decrease overall as the 
number of clusters increases. Cluster assignments based 
on CL- 3D features are significantly more consistent 
across all number of clusters compared with the other 
methods. When using nearest neighbor (NN) context 
sampling for CL- 3D, scores slightly decrease. IoU scores 
of other methods (CL- 2D, GLCM, pretrained encoder on 
ImageNet) are relatively close to each other. Setting r  = 0 
for CL- 2D, that is, not performing context sampling, 
stands out due to particularly low IoU values, which fall 
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below those of GLCM and the pretrained encoder on 
ImageNet for more than two clusters.

3.5. Using CL- 3D features for retrieval of common 
fiber orientation patterns

The proposed CL- 3D method embeds image patches 
with similar fiber architectural properties as close points 

in the learned feature space. Therefore, we expect that 
the resulting feature representations can be used for 
retrieval of similar structures, given a known “prototype” 
image patch. To evaluate the suitability for such an appli-
cation, we investigate how far U- fiber structures can be 
found in 3D- PLI image data from a few image examples. 
Although U- fibers are represented by one of the principal 
axes (Fig. 7D(7)), they do not appear as individual  clusters 

Fig. 10. Hierarchical agglomerative clustering of representations extracted by the CL- 3D approach produces consistent 
3D segments with anatomical relevance. (A) Approximately the tapetum and stratum calcarinum (1). (B) Contains steep 
fibers of the sagittal stratum (2). (C) Close to in- plane twisting or crossing fibers (4) and flat fanning fibers (12). (D) Flat 
fibers for layer VI (5) and WM (6). (E) Mainly layers IVb– V of primary visual area (V1), sometimes including layer VI (13). It is 
less clearly defined than other clusters.

Table 2. Cross- section consistency as mean IoU of k- means cluster assignments between neighboring sections based 
on different texture features.

Method r [µm] Input 2 clusters 8 clusters 32 clusters 128 clusters

GLCM - IT , sinδ, ϕ! 95.2 58.4 34.1 19.4
Histogram 95.4 49.8 27.7 14.3
LBP 49.4 30.9 17.3 9.2
[Histo., LBP, GLCM] 92.9 42.6 24.2 14.1
Pretrained (ImageNet) - IT 86.6 50.0 29.9 17.0

FOM 77.8 50.9 35.5 23.6
CL- 2D 0 IT , sinδ, ϕ 88.9 47.1 25.0 12.8

118 95.4 61.2 35.9 20.0
236 95.0 55.8 36.7 21.0

CL- 3D NN IT , sinδ, ϕ 89.2 70.8 50.2 30.3
118 96.1 70.5 51.0 32.3
236 95.4 71.9 50.7 32.0

For CL- 2D and CL- 3D, r  refers to the distance at which context sampling is performed, with nearest neighbor (NN) sampling being a 
special case of CL- 3D. Column “Input” denotes modalities used as input for each method. Using a cross- section sampling strategy in 
CL- 3D achieves the overall highest consistency. Bold values indicate the highest mean IoU score per column.
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in Figure 9E. To demonstrate that the representations can 
still be used to identify specific nerve fiber architectures, 
we provide a few positive examples of U- fibers to per-
form a query for similar fiber configurations (Fig. 11).

Unfortunately, access to detailed, annotated data in 
combination with 3D- PLI measurements is limited, as 
reliable identification of positive and negative examples is 

not always possible. However, we can still search for 
U- fibers by selecting only a few positive examples that 
could be identified with confidence from 3D- PLI images 
by  Takemura  et al.  (2020). For this purpose, we select up 
to six query points as positive examples (Fig. 11A) and 
compute affinity maps that show the similarity of all vox-
els in the feature maps to the averaged query features in 

Fig. 11. CL- 3D features allow retrieval of distinct nerve fiber patterns by using prototypical patches as queries and 
searching for nearby patches in feature space. (A) A section from the test set with query points that identify U- fibers. 
Yellow “U” labels in fiber orientation maps (left) and numbers in transmittance images (right) show identified U- fibers. Red 
dots mark query points for U- fibers with increasing examples (1, 3, and 6). (B) shows responses to queries in two other 
sections from the test set, displaying similarities of voxels to the mean representation of example points as affinity maps. 
The asterisk highlights the position of a U- fiber not detected by this procedure. U: U- fibers, VOF: vertical occipital fascicle, 
SC: stratum calcarinum.
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representational space as responses. For this experi-
ment, we smooth PCA- reduced feature maps with 20 
components (80.4% total explained variance) by a 2D 
Gaussian kernel analog to Section 3.4, but set σ = 2 to 
increase the receptive field of texture features. This allows 
to represent texture for larger structures such as U- fibers 
and improves retrieval results. We calculate the affinity 
between feature points using a Gaussian radial basis 
function (RBF) kernel with σ = 3.5.

The affinity maps reveal peak regions at locations dis-
playing U- fiber structures (Fig. 11B). They activate to all 
U- fibers identified by an expert, except for one missing 
activation for a U- fiber, highlighted by the asterisk. In 
addition, the activations highlight some fiber bundles that 
are not labeled as U- fibers, such as the vertical occipital 
fascicle (VOF) or the stratum calcarinum (SC). Although 
the false positive activations for VOF and SC could be 
suppressed through more query points, they do not dis-
appear completely.

4. DISCUSSION

4.1. CL- 3D features encode fundamental aspects  
of fiber architecture

Feature representations extracted by the proposed CL- 3D 
method from 3D- PLI image patches encode distinct 
aspects of fiber architecture. Our experiments in Sec-
tion 3.4 showed that the features form hierarchical clus-
ters that represent gray and white matter, myeloarchitectonic 
layer structures, fiber bundles, fiber crossings, and fiber 
fannings. These clusters are spatially consistent and often 
highlight specific characteristics of fiber architecture as 
locally connected structures (Fig. 9). Even without explicit 
clustering, the main PCA components of the feature 
embedding space produce maps that highlight fundamen-
tal principles of fiber architecture (Fig.  7). This indicates 
that proximity of features in the embedding space, which 
is efficient and easy to compute, serves as a suitable 
proxy measure for similarity of fiber architecture as cap-
tured in the corresponding image patches. This is in con-
trast to directly measuring similarity of 3D- PLI image 
patches, where strong differences can occur despite very 
similar fiber configurations. Thus, CL- 3D features are well 
suited to facilitate downstream applications for 3D- PLI 
image analysis.

4.2. CL- 3D features are robust to variations  
in histological processing

While encoding relevant aspects of fiber architecture, the 
proposed CL- 3D features proved to be robust against 
many other sources of texture variation. We were able to 

observe this robustness in the 3D stacking of consecu-
tive images with derived cluster segments from CL- 3D 
features. The segments showed a high overlap across 
brain sections (Table 2), in particular, compared with the 
clustering of classical texture features and a pretrained 
encoder on ImageNet as baselines, but also with respect 
to CL- 2D features. Clustering results by these methods 
were overall not consistent enough (see Appendix Fig. 
A3) to perform the same in- depth qualitative evaluation 
as performed for CL- 3D in Section 3.4.1. Volume render-
ings in Figure 10 illustrated the consistency of clustering 
CL- 3D features as spatially consistent 3D segments. This 
suggests that CL- 3D promotes the learning of represen-
tations that are more robust to discrepancies between 
independently processed sections. CL- 3D features were 
also found to be robust to the absolute in- plane orienta-
tion of texture, as shown by consistent laminar patterns 
of cluster assignments regardless of their absolute orien-
tation in 2D (Fig. 9).

Some of the robustness of CL- 3D features can be 
attributed to the introduced context sampling across 
brain sections, as shown in Table  2. CL- 3D features 
demonstrated significantly higher overlap in cluster 
assignments between sections compared with models 
trained with in- plane (CL- 2D) or without context sampling 
(CL- 2D with r = 0).

Another factor contributing to the robustness may 
result from the data augmentations specifically designed 
for 3D- PLI parameter maps, introduced in Section  2.2. 
CL- 3D and CL- 2D models trained with the introduced 
augmentations showed increased feature quality and 
robustness in Section 3.1.2. A comparison of individual 
augmentations identified the highest benefit from using 
color distortions (modulation of section thickness and the 
attenuation coefficient). For CL- 2D, using the blur aug-
mentation alone performed worse than training a model 
without augmentations. This is in line with  T.  Chen  et al. 
 (2020), who found the highest benefit from color distor-
tions and the least benefit from blur. For CL- 3D, geomet-
ric affine and flip augmentations each demonstrated a 
negative effect when used individually as the only aug-
mentation. This is surprising at first glance but could be 
explained by natural geometric distortions in the training 
pairs, which were sampled from unregistered, neighbor-
ing tissue sections. Including geometric transformations 
to the full set of augmentations, however, did not nega-
tively impact CL- 3D training.

Remaining inconsistencies in cluster assignments 
between sections as shown in the sagittal and axial 
planes in Figure 9A and E can be attributed to some vari-
ations between brain sections still captured in CL- 3D fea-
tures. For example, the “WM (Outlier sections)” cluster 
highlights white matter in sections with degraded 
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 transmittance, which we regard as a histological artifact. 
Imprecisions in the 3D reconstruction of adjacent brain 
sections could also contribute to this effect. The cross- 
section discontinuity of cluster assignments could be 
mitigated by postprocessing with the same spatial 
smoothing of features in the axial and sagittal planes as 
performed for feature maps in the coronal plane.

CL- 3D and CL- 2D features showed sensitivity to the 
relative cutting angle of cortical voxels, as observed by 
their ability to predict measured obliqueness using a lin-
ear model (Table 1). Obliqueness is a local feature of his-
tological images that is consistent across adjacent 
sections and could be exploited by the contrastive learn-
ing objective to identify nearby positive pairs. For the 
majority of cortical voxels, however, this effect on the fea-
tures seems to be small. Only for very high obliqueness, 
CL- 3D features formed some smaller branches in the 
UMAP projection in Figure 9D or isolated clusters in Fig-
ure  9E. This aligns with observations from the scatter 
plots (Fig.  8A) indicating that CL- 3D features primarily 
encode obliqueness for larger cutting angles, showing 
limited ability to predict smaller angles. If an encoding of 
obliqueness in downstream applications is nevertheless 
not intended, a supervisory signal that combines texture 
patches with different cutting angles into the same label 
could be helpful. For unsupervised learning, treating 
obliqueness as a confounding variable ( Dinga  et al.,  2020; 
 Snoek  et al.,  2019) could also help to reduce its effect.

4.3. Retrieval and mapping as possible  
downstream applications

Fiber architecture is expressed in highly complex tex-
tures when measured at microscopic resolution. This 
makes it extremely challenging to navigate and explore 
larger stacks of 3D- PLI images. An obvious, albeit sim-
ple, application is the search for similar local configura-
tions of nerve fibers, given a template image patch used 
as a prototype for such a query. We took a search for 
U- fiber structures as an example (Fig. 11), where inde-
pendent expert annotations could be obtained from a 
previous study, and were able to demonstrate the feasi-
bility of such a retrieval task with the proposed CL- 3D 
features.

We showed that features cluster into groups that fol-
low certain fiber bundles such as the sagittal stratum or 
the tapetum (Fig. 9). While this might at first suggest the 
use of features for automated brain mapping tasks, the 
clusters did not lend themselves to a sufficiently accurate 
delineation of anatomical structures. This could be due to 
partial volume effects of patches used to represent tex-
ture, or to the smoothing performed before clustering to 
denoise the features. As contrastive learning focuses on 

the most characteristic properties of texture to identify 
positive pairs, some aspects of fiber architecture might 
overshadow others. The clustering shown in Figure 9E, 
for example, did not fall into accurate GM/WM segments. 
This could be due to features reflecting the density of 
myelinated fibers more than other aspects of fiber archi-
tecture, thus including the deepest cortical layers in the 
WM segment, where the density of myelinated fibers is 
still very high. Since the degree of sharpness of the 
boundary between cortex and white matter constitutes a 
criterium for the identification of architectonically distinct 
areas ( Niu  et al.,  2020), another explanation would, there-
fore, be that brain areas with a blurry boundary are those 
in which voxels of layer VI merge into the WM segment. It 
should be noted though that the proposed feature 
extraction method is not specifically designed for per-
forming automatic brain mapping. A supervised approach 
for brain mapping as a downstream application can nev-
ertheless be promising with the proposed features. Lin-
ear evaluation, as shown in Figure 5, demonstrated that a 
linear classifier on top of CL- 3D or CL- 2D features 
required only 30 examples per tissue class (gray matter, 
white matter, or background) to perform convincing clas-
sification, significantly reducing the amount of manual 
annotation required. A more systematic investigation into 
fiber architectonic mapping based on CL- 3D features will 
be an important follow- up work of this study.

4.4. Relationship of feature representations  
with brain morphology

Cortical layers are arranged along the cortical depth  
and have distinct characteristic architectures. Being able 
to regress cortical depth from texture features using a 
simple linear model, therefore, suggests that features 
robustly encode information about the layering structure 
of the cortex, which is important for downstream applica-
tions such as brain mapping. The high amount of vari-
ance in cortical depth that could be explained by a linear 
model from CL- 3D and CL- 2D features (Table 1) indicates 
that these models indeed encode layer- related textures. 
For CL- 3D, this claim is also supported by the observa-
tion that the main PCA components highlight individual 
cortical layers (Fig.  7), while clustering of the features 
shows several clusters that group more superficial and 
deeper layers (Fig. 9). Furthermore, being able to regress 
the depth of patches within white matter (Table 1) sug-
gests that CL- 3D and CL- 2D features robustly separate 
deep from superficial fiber bundles such as U- fibers 
( Decramer  et al.,  2018;  Shinohara  et al.,  2020). Classical 
texture features, as well as a pretrained model on Ima-
geNet, however, demonstrated significantly lower capa-
bility in predicting cortical and white matter depth. A 
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CL- 2D model with sampling radius r = 0, that is, not per-
forming context sampling, performed much worse. This 
highlights a positive effect of the introduced context 
sampling in learning expressive representations for fiber 
architecture in 3D- PLI.

Methods for analyzing the laminar structure of the cor-
tex typically require representations that are robust to cor-
tical folding ( Leprince  et al.,  2015;  Schleicher  et al.,  1999; 
 Waehnert  et al.,  2014). While CL- 3D and CL- 2D learned to 
represent some curvature- related patterns such as for fan-
ning radial fibers at gyral crowns (Fig. 9), predicting curva-
ture from the features did not work well (Table 1), indicating 
moderate robustness of the proposed feature representa-
tions to cortical folding. For CL- 3D and CL- 2D, the weak 
encoding might be attributed to the affine transformation 
applied in the contrastive learning setup, which performs 
scaling and shearing operations on the texture examples. 
It should be noted that in addition to the curvature defini-
tion used in Section  3.3, other established definitions 
( Goldman,  2005) that have not been considered in this 
study might lead to different results.

5. CONCLUSION AND OUTLOOK

Aiming to improve automatic mapping and analysis of 
fiber orientation distributions in the brain, we introduced a 
self- supervised contrastive learning scheme for extracting 
“deep” feature representations for 3D- PLI image patches 
at micrometer resolution. We specifically proposed 3D 
context Contrastive Learning (CL- 3D), introducing a con-
text sampling strategy to sample positive pairs based on 
their spatial proximity across nearby brain sections. With-
out any anatomical prior information given during training, 
the feature representations extracted by CL- 3D were 
shown to highlight fundamental patterns of fiber architec-
ture in both gray and white matter, such as myelinated 
radial and tangential fibers within the cortex, fiber bundles, 
crossings, and fannings. At the same time, feature repre-
sentations by CL- 3D proved to be more robust to varia-
tions between independently measured sections, such as 
artifacts arising from histological processing, compared 
with statistical methods, an encoder pretrained on natural 
images, and representations by in- plane sampling of pos-
itive pairs in contrastive learning (CL- 2D).

The present study opens new perspectives for auto-
mated analysis of fiber architecture in 3D- PLI. Due to the 
low- dimensional embedding space, CL- 3D feature repre-
sentations can aid in interpretation of 3D- PLI textures 
and improve computational efficiency of downstream 
3D- PLI analysis. For example, the learned feature repre-
sentations can be used to develop spatial maps of spe-
cific aspects of fiber orientation distributions, such as 
U- fibers, which allow comparison of fiber architecture 

with other modalities linked to brain atlases. They can 
also be used to train discriminative models for down-
stream tasks such as segmenting tissue classes, cortical 
layers, fiber bundles, or even brain areas with minimal 
number of positive and negative labeled examples.

An important direction for future research will be to 
extend the trained models to larger training datasets. We 
intend to extend the approach to whole- brain datasets, 
possibly including multiple species. Since the main chal-
lenge for establishing training data is the precise 3D 
reconstruction from individual brain sections, it will be 
helpful to investigate how far approximate registrations 
can be sufficient for CL- 3D. Furthermore, we plan to inte-
grate deep 3D- PLI features into brain atlases to provide 
easy accessibility. For the human brain, the BigBrain 
( Amunts  et al.,  2013) model would be an ideal reference 
model for integration, which is already used for multi-
modal data integration from other imaging modalities, 
such as cyto-  and receptor architecture.

DATA AND CODE AVAILABILITY

The software used to implement and train self-supervised 
CL-3D and CL-2D models is available on GitHub (https://
github.com/FZJ-INM1-BDA/cl-3d). An implementation of 
the introduced data augmentations for 3D-PLI images 
(https://jugit.fz-juelich.de/inm-1/bda/software/data_ 
processing/pli-transforms) as well as additional depen-
dencies (https://jugit.fz-juelich.de/inm-1/bda/software) are 
available on GitLab.

Volumetric clustering results, PCA projections of 
extracted CL- 3D features, measures of cortex morphol-
ogy, and 3D- PLI fiber orientation and transmittance maps 
for reference are available on the EBRAINS data sharing 
platform ( Oberstrass  et al.,  2024).

The complete set of high- resolution 3D- PLI images for 
the vervet monkey occipital lobe is hosted on the Jülich 
supercomputing facility. A subset of selected 3D- PLI 
images is available on EBRAINS ( Axer,  Gräßel,  et  al., 
 2020), with a future publication of the whole stack of 
images planned.
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Appendix Fig. A2. Projection of CL- 3D features from section 961 onto the 9 PCA components with largest explained 
variance. (A) Transmittance and (B) fiber orientation maps (FOM). (C) Scree plot showing the variance explained by the first 
32 components. The horizontal red line indicates the variance explained by the 9th component of 2.8%. (D) Color- coded 
parameter maps of the selected PCA components, with background pixels masked as zero. The maps reveal anatomically 
plausible structures. Structures identified by each PCA component in this section are consistent with section 898 (Fig. 7). 
GM: gray matter, WM: white matter, V1: primary visual cortex.
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Appendix Fig. A3. Agglomerative hierarchical clustering results for 14 clusters across all feature extraction methods 
show highest cluster quality by CL- 3D. Baseline GLCM, histogram, LBP, and combined features, as well as a pretrained 
encoder on ImageNet using transmittance and FOM images, produce fragmented cluster assignments in the coronal plane 
and inconsistent assignments in the sagittal and axial planes. In contrast, CL- 2D and CL- 3D demonstrate more organized 
cluster assignments in the coronal plane, with CL- 3D showing most consistent cluster assignments in the axial and 
sagittal planes.


